Worksheet 3

Recall: A **rational number** (\mathbb{Q}) is a number that can be expressed as the quotient or fraction $\frac{p}{q}$ of two integers, a numerator p and a non-zero denominator q. The **irrational numbers** (\mathbb{I}) are all the real numbers which are not rational.

- 1. Prove that the sum of a rational number and an irrational number is irrational
 - a. What can we suppose:
 - b. Write the statement in mathematical symbols
 - c. Write down an example to support the statement
 - d. What proof method are we considering using:
 - i. Direct proof? (if not, why?)
 - ii. Proof by contrapositive? (if not, why?)
 - iii. Proof by contradiction? (if not, why?)
 - e. Proof:

MATH 258-02 1 Harry Yan

2.	2. Prove that if a and b are consecutive integers, then the sum a + b is odd								
	a.	What can we suppose:							
	b.	Write the statement in mathematical symbols							
	c.	Write down an example to support the statement							
	d.	What proof method are we considering using: i. Direct proof? (if not, why?)							
		ii. Proof by contrapositive? (if not, why?)							
		iii. Proof by contradiction? (if not, why?)							
	e.	Proof:							

MATH 258-02 2 Harry Yan

3. Prove that the real number $\sqrt{4}$ is rational								
	a.	What can we suppose:						
	b.	Definitions we could use:						
	c.	What proof method are we considering using: i. Direct proof? (if not, why?)						
		ii. Proof by contrapositive? (if not, why?)						

iii. Proof by contradiction? (if not, why?)

d. Proof:

1	Drozza	that	tha	2001	number	1/2	:.	innotic	1
4.	Prove	tnat	tne	real	number	٧Z	1S	irratic	mai

- a. What can we suppose:
- b. What proof method are we considering using:
 - i. Direct proof? (if not, why?)
 - ii. Proof by contrapositive? (if not, why?)
 - iii. Proof by contradiction? (if not, why?)
- c. Proof:

MATH 258-02 4 Harry Yan

5. Suppose $n \in \mathbb{Z}$ (integers), prove that $(n+1)^2 - 1$ is even if and only if n is even

MATH 258-02 5 Harry Yan

6. Let $a, b, c \in \mathbb{Z}$, prove that if a and c are odd, then ab + bc is even

7. Let $x, y \in \mathbb{Z}$, prove that if $3 \nmid x$ and $3 \nmid y$, then $3 \mid (x^2 + y^2)$